Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models

نویسنده

  • Jonathan W. Pillow
چکیده

Recent work on the statistical modeling of neural responses has focused on modulated renewal processes in which the spike rate is a function of the stimulus and recent spiking history. Typically, these models incorporate spike-history dependencies via either: (A) a conditionally-Poisson process with rate dependent on a linear projection of the spike train history (e.g., generalized linear model); or (B) a modulated non-Poisson renewal process (e.g., inhomogeneous gamma process). Here we show that the two approaches can be combined, resulting in a conditional renewal (CR) model for neural spike trains. This model captures both real-time and rescaled-time history effects, and can be fit by maximum likelihood using a simple application of the time-rescaling theorem [1]. We show that for any modulated renewal process model, the log-likelihood is concave in the linear filter parameters only under certain restrictive conditions on the renewal density (ruling out many popular choices, e.g. gamma with shape κ 6= 1), suggesting that real-time history effects are easier to estimate than non-Poisson renewal properties. Moreover, we show that goodness-of-fit tests based on the time-rescaling theorem [1] quantify relative-time effects, but do not reliably assess accuracy in spike prediction or stimulus-response modeling. We illustrate the CR model with applications to both real and simulated neural data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks

Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

Hybrid Models Performance Assessment to Predict Flow of Gamasyab River

Awareness of the level of river flow and its fluctuations at different times is one of the significant factor to achieve sustainable development for water resource issues. Therefore, the present study two hybrid models, Wavelet- Adaptive Neural Fuzzy Interference System (WANFIS) and Wavelet- Artificial Neural Network (WANN) are used for flow prediction of Gamasyab River (Nahavand, Hamedan, Iran...

متن کامل

PREDICTIVE MODELS OF THE DOMINANT PERIOD OF SITE USING ARTIFICIAL NEURAL NETWORK AND MICROTREMOR MEASUREMENTS: APPLICATION TO URMIA, IRAN

Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the se...

متن کامل

Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)

Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009